منابع مشابه
Spectral and Geometric Bounds on 2 - Orbifold Diffeomorphism
We show that a Laplace isospectral family of two dimensional Riemannian orbifolds, sharing a lower bound on sectional curvature, contains orbifolds of only a finite number of orbifold category diffeomorphism types. We also show that orbifolds of only finitely many orbifold diffeomorphism types may arise in any collection of 2-orbifolds satisfying lower bounds on sectional curvature and volume, ...
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملsharp bounds on the pi spectral radius
in this paper some upper and lower bounds for the greatest eigenvalues of the pi and vertex pimatrices of a graph g are obtained. those graphs for which these bounds are best possible arecharacterized.
متن کاملOn spectral bounds for cutsets
Let be a simple and connected graph. A k-vertex separator [k-edge separator] is a subset of vertices [edges] whose deletion separates the vertex [edge] set of into two parts of equal cardinality, that are at distance greater than k in . Here we investigate the relation between the cardinality of these cutsets and the laplacian spectrum of . As a consequence of the study, we obtain the well-know...
متن کاملSpectral Bounds on the Chromatic Number
The purpose of this paper is to discuss spectral bounds on the chromatic number of a graph. The classic result by Hoffman, where λ1 and λn are respectively the maximum and minimum eigenvalues of the adjacency matrix of a graph G, is χ(G) ≥ 1− λ1 λn . It is possible to discuss the coloring of Hermitian matrices in general. Nikiforov developed a spectral bound on the chromatic number of such matr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Global Analysis and Geometry
سال: 2005
ISSN: 0232-704X,1572-9060
DOI: 10.1007/s10455-005-1584-7